Authors: Birgitte Hansen, Denitza D Voutchkova, Peter B E Sandersen, Anders Kallesøe, Lærke Thorling, Ingelise Møller, Rasmus B Madsen, Rasmus Jakobsen, Jens Aamand, Pradip Maurya and Hyojin Kim
Abstract: Cost-efficient targeted nitrogen (N) regulation of agriculture with low impact on the environment is the new N regulation paradigm. It requires detailed knowledge of the geological and geochemical conditions of the subsurface, which is crucial for assessing the nitrate flow paths and reduction processes. An integral part of this is an analysis of the subsurface redox structures to determine the locations of nitrate reduction. This knowledge has so far not been easy to access because of lacking technology. Here, we present a new concept consisting of the integration and interpretation of data from the geophysical towed transient electromagnetic method, borehole information on lithology, sediment colour descriptions, geochemistry and groundwater chemistry. The concept is demonstrated in three small first-order hydrological catchments. National GIS screening analyses show that the new concept is highly needed in large parts of Denmark where the redox structures are complicated, e.g. in marine landscape types and in glacial moraine landscapes, but less needed in areas dominated by homogeneous meltwater plains. Providing subsurface knowledge for locally targeted N regulation of agriculture is paramount in many developed countries with intensive agriculture to lower the environmental impact, and it could also be critical in developing countries to support sustainable economic and environmental development.
Environmental Research Letters, 16(2)